Abdelwareth A. O. Sarhan*, Hassan. A. H. ElSherif, Abdalla M. Mahmoud

and Osama M. A. Habib
Chemistry Department, Faculty of Science, Assiut University
Assiut 71516, Egypt
E-mail: elwareth@acc.aun.edu.eg
Received November 6, 2006

Abstract

3-Benzyl-4-phenyl-1,2,4-triazole-5-thiol (1) was synthesized and used as starting material for preparation of 1,2,4-triazole bearing substituted thiosemicarbazides moiety (4a-d) in high yields. The thiosemicarbazides $4 \mathbf{a - d}$ were cyclized in basic medium to give two triazole rings linked by thiomethylene group (5a-d), while cyclization of thiosemicarbazides 4a-d with chloroacetyl chloride in the presence of CHCl_{3} and $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded the thiazolidinone derivatives $\mathbf{6 a - d}$. The reaction of thiosemicarbazides $\mathbf{4 a} \mathbf{- c}$ with phenacyl bromide in the presence of EtOH and fused $\mathrm{CH}_{3} \mathrm{COONa}$ gave the corresponding thiazoline ring systems 7a-c. Condensation of the 3-benzyl-1,2,4-triazole-5(1H)thiol (1) with chloroacetic acid and aromatic aldehydes ($\mathbf{8 a} \mathbf{- g}$) in boiling acetic acid/acetic anhydride mixture in the presence of fused sodium acetate gave one single isomer only, which might be 9a-g or 10a-g. Upon application of Micheal addition reaction on compounds 9a-e with cyclic secondary amines such as piperidine or morpholine the 2-benzyl-6-(α-amino-aryl/methyl)-1,3-thiazolo[3,2-$b][1,2,4]$-triazol-5-ols (11a-j) were obtained in good yields The structure of all new compounds were determined using both spectral and elemental analyses.

J. Heterocyclic Chem., 45, 897 (2008).

INTRODUCTION

Thiosemicarbazides are convenient intermediates for synthesis of several heterocycles such as triazoles, thiazolines and thiazolidinones. It has been reported that thiosemicarbazide derivatives have antitubercular [1,2], antifungal [2-4] and hypoglycemic [5] activities. These findings encouraged us to synthesize new s-triazole derivatives incorporated thiosemicarbazide moiety, thiazoline, thiazolidinone or triazole ring systems. Several thiazolo[3,2-b]-[1,2,4]triazol-5(6H)-ones [6-12] have been prepared directly in one step reaction using the mercaptotriazole, chloroacetic acid and aromatic aldehydes.

Kendall et al. [13] have reported that the synthesis of 1,3-thiazolo-1,2,4-triazoles occurred by the reaction of 3-mercapto-5-methyl-1,2,4-triazole with chloroacetic acid to give the 1,2,4-triazolylthioglycolic acid derivative, which on ring closure in the presence of acetic anhydride/ pyridine mixture afforded the thiazolo[2,3-c]-1,2,4-tri-azol- $5(6 H)$-one. No rigorous proof was given to exclude the possible alternative structure 1,3-thiazolo[2,3-b]-1,2,4-triazole, Scheme 1.

Gogoi [14] and Tozkoparan [15] and coworkers, have studied also the cyclization of this type of reaction for the preparation of the 2 -substituted-6-arylidenylthiazolo[3,2-b]-1,2,4-triazol-5-($6 H$)-one, either in two steps or in one step reaction. Direct condenstation of 1,2,4-triazole-3thiol with chloroacetic acid and aromatic aldehydes under the same reaction conditions gave the same result $[10,16]$, Scheme 2.

Scheme 2

RESULTS AND DISCUSSION

The 3-benzyl-4-phenyl-1,2,4-triazole-5-thiol (1) was prepared according to the reported method in good yield [17]. Treatment of $\mathbf{1}$ with ethyl chloroacetate in boiling ethanol containing fused sodium acetate gave the corresponding ester $\mathbf{2}$ in 85% yields. The latter was reacted with hydrazine hydrate in refluxing ethanol to give the corresponding crystalline hydrazide $\mathbf{3}$ as colorless needles in 90% yield. The hydrazide derivative 3 was treated with the appropriate isothiocyanate derivatives in boiling ethanol to afford the corresponding $1-[(5 '$-benzyl-4'-phenyl-1,2,4-triazol-3'-yl)thioacetyl]-4-substituted-thiosemicarb-azides (4a-d) in high yields as shown in Scheme 3.

Scheme 3

On cyclization of the thiosemicarbazides 4a-d in basic medium the 5-benzyl-4-phenyl-3-[(5'-mercapto-4'-substi-tuted-s-triazol-3'-yl)methylthio]-s-triazoles 5a-d were obtained in good yield. Further, the thiosemicarbazides 4a-d were reacted with chloroacetyl chloride in boiling CHCl_{3} in the presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded the
Scheme 4

a; $\mathrm{R}=\mathrm{CH}_{3} \quad$ b; $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \quad \mathbf{a} ; \mathrm{R}=\mathrm{CH}_{3} \quad$ b; $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$ $\mathbf{c} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~d} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \quad \mathrm{c}$

4a-d
3
$\mathbf{4 a} ; \mathrm{R}=\mathrm{CH}_{3}, \mathbf{4 b} ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathbf{4 c} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}, \mathbf{4 d} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$

N -(3-substituted-4-oxothiazolidine-2-ylidene)-N'-[(5'-benzyl-4'phenyl-s-triazol-3'-yl)thioacetyl]hydrazines (6ad) $[18,19]$. While, reaction of the thiosemicarbazides 4a-c with phenacyl bromide in boiling ethanol in the presence of fused sodium acetate gave the N-(4-phenyl-3-substituted-2,3-dihydrothiozol-2-ylidene- N^{\prime}-[(5'-benzyl-4'-phenyl-s-triazol-3'-yl)thioacetyl]hydrazines (7a-c) respectively, Scheme 4.

The structures of the compounds 2, 3, 4a-d, 6a-d and 7a-c were confirmed on the basis of their spectral and elemental analysis and are in satisfactory agreement with the suggested structure. The IR spectra of compounds 4ad showed the appearance of three NH groups at $v 3300$, 3200 and $3150 \mathrm{~cm}^{-1}$ respectively. Compounds 5a-d revealed an absorption band at $v 3070 \sim 3090 \mathrm{~cm}^{-1}$ characterized to the NH besides the absorption band at v $1070 \mathrm{~cm}^{-1}$ due to the presence of the $(\mathrm{C}=\mathrm{S})$ group. The lowering of the NH absorption bands in compounds 5a-d might be attributed to the tautomeric nature of the $\mathrm{HN}-$ $\mathrm{C}=\mathrm{S} \leftrightarrow \mathrm{N}=\mathrm{C}-\mathrm{SH}$ group. While the IR spectra of compounds 6a-d and 7a-c exhibited only one sharp absorption band at $v 3150 \sim 3200 \mathrm{~cm}^{-1}$, characteristic of the presence of the NH group, appeared in all compounds.

On the other hand, condensation of the 3-benzyl-1,2,4-triazole-5(1H)-thiol (1) with chloroacetic acid [9] and appropriate aromatic aldehydes 8a-g in boiling glacial acetic acid/acetic anhydride mixture in the presence of fused sodium acetate gave only one pure product, which may be 9 or $\mathbf{1 0}$, Scheme 5 .

Scheme 5

$\mathbf{a} ; \mathrm{R}=\mathrm{H}, \mathbf{b} ; \mathrm{R}=\mathrm{Cl}, \mathbf{c} ; \mathrm{R}=\mathrm{NO}_{2}, \mathbf{d} ; \mathrm{R}=\mathrm{OCH}_{3}$ $\mathbf{e} ; \mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, \mathbf{f} ; \mathrm{R}=\mathrm{Br}, \mathbf{g} ; \mathrm{R}=\mathrm{OCOCH}_{3}$

The experimental ${ }^{1} \mathrm{H}$-NMR spectral analysis and molecular modeling calculations of compounds $\mathbf{9}$ and $\mathbf{1 0}$ were found in satisfactory agreement with similar results reported in literature [6]. The data obtained herein support that formation of the derivatives $\mathbf{9 a - g}$ are favored over compounds 10a-g. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data of the products showed a singlet at $\delta 4.2-4.1 \mathrm{ppm}$ which
attributed to the methylene protons $\left(\mathrm{CH}_{2}\right)$ in addition to the other expected protons, detailed of NMR spectra are summarized in the experimental section. The IR spectra of 9a-g showed bands at 3030 (C-H aromatic), 2920 (C-H aliphatic), 1730-1710 ($\mathrm{C}=\mathrm{O}$) and 1610-1580 ($\mathrm{C}=\mathrm{N}$), in addition compound $9 \mathbf{g}$ exhibited an additional band at $1750 \mathrm{~cm}^{-1}$ for the second $(\mathrm{C}=\mathrm{O})$ due to the acetylation of the hydroxyl group (OH). The mass spectra of compounds $\mathbf{9 e}$ and 9 g showed the molecular ion peaks M^{+}at $\mathrm{m} / \mathrm{z} 377$ (75%) and 362 (100%) respectively.

On the other hand the molecular modeling study revealed that the formation of compounds $\mathbf{9 a - g}$ is more favorable than 10a-g, Table 1. Our studies based on the MMX-M calculation, MOPAC force field calculation of MM2+ type [20]. Further the stereochemistry of compounds $9 \mathbf{9 - g}$ has been achieved also by molecular modeling calculations, which indicate that the (E) configuration is more stable than the (Z) isomer, Table 1.
Moreover, when compounds 9a-e were reacted with
cyclic secondary amines such as piperidine or morpholine, in tetrahydrofuran under the conditions of Michael addition reaction gave the expected 2-benzyl-6(α-amino-aryl-methyl)-1,3-thiazolo[3,2-b]-1,2,4-triazole5 -ols (11a-j) in relatively high yields, Scheme 6.

Figure 1. Ball and stick model of the isomer 9a drawn from Chem3D 9.0.1.

Table 1
The molecular mechanical calculations of compounds 9a-g (E-form and Z-form) and 10a-g.

Ph	 orm) 9a-g	0		
Compd. No. 9 and 10	R	$\begin{gathered} E(\mathrm{k} . \mathrm{cal} . / \mathrm{mol} .) \\ \text { Comp. 9a-g } \\ (E \text {-form }) \end{gathered}$	$\begin{gathered} E(\mathrm{k} . \mathrm{cal} . / \mathrm{mol} .) \\ \text { Comp. 9a-g } \\ (Z \text {-form }) \end{gathered}$	E (k.cal. $/ \mathrm{mol}$.) Comp. 10a-g
a	H	46.247	51.138	52.974
b	Cl	46.197	51.329	52.803
c	NO_{2}	48.484	49.637	54.224
d	OCH_{3}	53.419	53.899	54.848
e	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	50.544	56.129	57.668
f	Br	45.679	50.905	52.339
g	OCOCH_{3}	49.447	56.507	56.585

The structure of the addition products 11a-j was confirmed by their elemental and spectral analysis. The IR spectra of 11a-j showed an absorption band at 3200-3100 cm^{-1} (OH group) due to the enolic form instead of the band at $1730-1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$ of the ketonic form. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data of $\mathbf{1 1 a - j}$ in CDCl_{3} showed a set of signals at δ 8.3-6.6 (m, aromatic protons) of the starting 9a-e, $\delta 7.0-6.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCHN}), \delta 4.2-4.1\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2^{-}}\right)$ and at $\delta 3.7-1.3\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right.$ of piperidine) or at $\delta 3.8$ $3.3 \mathrm{ppm}\left(\mathrm{m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right.$ of morpholine). The mass spectra of 11a,b and $\mathbf{1 1 g}$ showed molecular ion peaks M^{+}with weak intensity at $\mathrm{m} / \mathrm{z} 404$ (3\%) (11a), 438 (1 \%), 440 (2\%) (11b) and 442 (1%) (11g) respectively, the base peak is $\left(\mathrm{M}^{+}-85\right)$ or $\left(\mathrm{M}^{+}-87\right)$ due to loss of a pipreidine or morpholine molecule respectively.

The UV spectra of compounds 9a-f showed a bathochromic shift (red shift) of about 204-103 nm as a
result of cyclization and the extended conjugation occurring in the parent 1,2,4-triazole $\mathbf{1}$, which has $\lambda_{\text {max }}$ at $254,210 \mathrm{~nm}$. The effect of substituent on the absorption wave length $\left(\lambda_{\max }\right)$ was shown in the following order $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{OCH}_{3}>\mathrm{NO}_{2}>\mathrm{Br}>\mathrm{Cl}>\mathrm{H}$. However, the Micheal addition reaction products 11a-j showed a hypsochromic shift (blue shift) of $38-99 \mathrm{~nm}$ due to the shortening of conjugation.

Finally, the reaction of $9 \mathbf{e}$ with malononitrile in ethanol in the presence of pyridine as basic catalyst gave the 4N, N-dimethylaminobenzyledinemalononitrile (12) in 82% yield instead of the targeted compound $\mathbf{1 3}$ besides the formation of the starting 3-benzyl-4-phenyl-1,2,4-triazole-5-thiol (1) in low yield [21]. The IR spectrum of compound 12 showed a strong band at $2200 \mathrm{~cm}^{-1}$ due to the presence of two identical $\mathrm{C} \equiv \mathrm{N}$ groups, while its ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} showed signals at $\delta 7.8$ and 6.7 (d, 4 H , aromatic- H), $7.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C})$ and $3.15 \mathrm{ppm}(\mathrm{s}$, $\left.6 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. On the other hand, an authentic sample of compound 12 was also prepared by the reaction of 4N, N-dimethylaminobenzaldehyde and malononitrile, Scheme 7. The product $\mathbf{1 2}$ was found to be identical with that obtained by the reaction explained in Scheme 7, in terms of melting temperature and mixed melting temperature [22]. Also the IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, mass spectral data and elemental analysis of both compounds were found similar.

Scheme 7

The mechanism of the formation of both compounds $\mathbf{1 2}$ and the starting material $\mathbf{1}$ is formulated to be as in Scheme 8.
Unfortunately we tried to grow such crystal of any compound of 9a-g enough for X-Ray analysis but we could not succeed. This forced us to search how compounds $9 \mathbf{9 - g}$ are formed and how the reaction proceeds. We concluded that in three ways: theoretically how the cyclization took place, chemically and finally using the ${ }^{1} \mathrm{HNMR}$ spectral data obtained experimentally and compare it with the estimated one. To proof chemically how the reaction and the cyclization occurs another chemical reactions should be used in this

Scheme 8

comparison to find out why the isomers 9a-g is formed rather than 10a-g. We applied an unequivocal synthesis of 5-phenyl-3-benzyl-1,3-thiazolo[2,3-c][1,2,4]triazole (14). A mixture of 1-phenylacetyl-3-thiosemicarbazide (15) and phenyl bromomethyl ketone was refluxed in ethanol to give 2-(phenylacetyl-hydrazino)-4-phenylthiazole (16). Refluxing of 16 in POCl_{3} afforded the isomeric 3-benzyl-5-phenyl-1,3-thiazolo[2,3-c]-[1,2,4]triazole (14) as previously reported for similar compounds, Scheme 9 [23].

Scheme 9

The synthesized compound 14 were found to be different on comparison with the isomeric compounds 17a-c, which synthesized using the procedures reported in literature [24]. The direct reaction of $\mathbf{1}$ with acetophenone derivatives in acetic acid catalyzed by concentrated sulfuric acid lead to the formation of 17a-c rather than the formation of $\mathbf{1 4}$. We found also the synthesized compounds 17a-c using the literature method were identical with those obtained by our method [24].

14a; $\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathbf{1 4 b} ; \mathrm{R}_{1}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$ 14c; $\mathrm{R}_{1}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}$

14, 17; $\mathrm{R}=\mathrm{H}$
17a; $\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathbf{1 7 b} ; \mathrm{R}_{1}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$ 17c; $\mathrm{R}_{1}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}$

Another proof we used the estimation ${ }^{1} \mathrm{HNMR}$ (ACD/HNMR 1.0) for comparison purposes with the
experimental ${ }^{1}$ HNMR data summarized in the experimental section to proof which of the structures $9 \mathbf{a - g}$ or 10a-g were obtained. We found that our suggested structures $9 \mathbf{9 - g}$ was in satisfactory agreement with the estimated 9a-g. The experimental ${ }^{1} \mathrm{H}$ NMR spectra of compounds 9a-g showed a sharp singlet at $\delta 8.00-8.3$ ppm typical for the $\mathrm{CH}=\mathrm{C}$ proton linked to the aryl group, which is in agreement with the estimated one appearing at $\delta 8.14$ for all derivatives indicating that the
isomers 9a-g were obtained rather than 10a-g ($\mathrm{CH}=\mathrm{C}$ appeared at $\delta 6.76 \mathrm{ppm}$). The comparison of these spectra with theoretical predictions for both isomers is given in Table 2.

EXPERIMENTAL

Melting points were recorded on a Gallencamp melting point apparatus. Infrared spectra (IR) were measured on a Shimadzu

Table 2
Chemical shifts of the CH and CH_{2} in the Experimental and Estimated ${ }^{1} \mathrm{HNMR}$ Data of Compounds $\mathbf{9 a - j}(\mathrm{ppm})$.

Compd. No.	R	${ }^{1} \mathrm{HNMR}$				Compd. No.	${ }^{1}$ HNMR Estimated	
		Experimental		Estimated				
		CH_{2}	CH	CH_{2}	CH		CH_{2}	CH
9 a	H	4.20	8.20	4.78	8.14	10a	4.50	6.76
9 b	Cl	4.20	8.10	4.79	8.14	10b	4.50	6.76
9 c	NO_{2}	4.15	8.30	4.79	8.14	10c	4.50	6.76
9d	OCH_{3}	4.20	8.20	4.79	8.14	10d	4.50	6.76
9 e	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	4.20	8.05	4.79	8.14	10e	4.50	6.76
9 f	Br	4.10	8.00	4.79	8.14	10 f	4.50	6.76
9j	OCOCH_{3}	4.15	8.20	4.79	8.14	10j	4.50	6.76

Figure 2. The experimental ${ }^{1} \mathrm{HNMR}$ spectrum of $\mathbf{9 b}(\mathrm{R}=\mathrm{Cl})$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Figure 3. The experimental ${ }^{13} \mathrm{CNMR}$ spectrum of $\mathbf{9 b}(\mathrm{R}=\mathrm{Cl})$ in $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$.

470 IR spectrometer $\left(\mathrm{KBr}\right.$, max in $\left.\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{HNMR}$ Spectra were recorded at room temperature on a Varian EM-390, 90 MHz Spectrometer or on a JEOL LA 400 MHz FT-NMR spectrometer. Chemical shifts are denoted in $\delta \mathrm{ppm}$ values, relative to tetramethylsilane (TMS) as internal standard, J values are given in $\mathrm{Hz} . \mathrm{CDCl}_{3}$ is used as a deuterated solvent unless otherwise stated. MS Spectra was obtained using a JEOL JMS600 mass spectrometer. Elemental analyses were recorded on a Perkins Elmer 240C elemental analyzer (Assiut University unit). The solvents were distilled before use. Compounds 1, $\mathbf{1 4}$ and 17a-c were prepared according to the method previously described in literature [24].

Synthesis of ethyl (5-benzyl-4-phenyl-1,2,4-triazol-3-yl)mercaptoacetate (2). To a solution of 3-benzyl-4-phenyl-1,2,4-triazol-5-thiol (1) [6] (0.01 mol) in ethanol (50 mL) and anhydrous sodium acetate $(1.0 \mathrm{~g})$ ethyl chloroacetate $(0.015$ mole) was added, then the mixture was refluxed for 2 hours. The reaction mixture was cooled, filtered and the crude product was washed with water and crystallized from ethanol/benzene mixture to give the corresponding ester derivative 2 as colorless needles crystals in 85% yield, Mp. $75-76^{\circ} \mathrm{C}$. IR (KBr) $v=$ 3050w (C-H aromatic), 2990m, 2910m (C-H aliphatic), 1700s (C=O), 1590s (C=N), 1400s, 1530s, 1450s, 1500s (C-H aromatic), $1280 \mathrm{~s}, 1130 \mathrm{~s}, 1010 \mathrm{~s}(\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{N}), 700 \mathrm{~s}, 730 \mathrm{~s}$, $750 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.6-6.9(\mathrm{~m}$, 10 H , aromatic- H$), 4.0\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{2}-\right), 4.1\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CO}\right)$, $4.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.2 \mathrm{ppm}\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Elemental analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (353.45); Calcd: C, 64.57; H, 5.42; N, 11.89; S, 9.07%. Found: C, 64.66; H, 5.30; N, $11.80 ;$ S, 8.71%.

Synthesis of (5-benzyl-4-phenyl-1,2,4-triazol-3-yl)mercaptoacetic hydrazide (3). A mixture of the ester 2 (0.01 mole) and hydrazine hydrate (0.015 mole) was refluxed in ethanol $(50 \mathrm{~mL})$
for 3 hours, then cooled at room temperature, filtered and crystallized from ethanol to give white needles crystals of the hydrazide derivative 3 in 90% yield, $\mathrm{Mp} .151-152^{\circ} \mathrm{C}$. IR (KBr) v $=3300 \mathrm{~s}, 3200 \mathrm{~s}, 3150 \mathrm{~m}\left(\mathrm{NH}-\mathrm{NH}_{2}\right), 3030 \mathrm{w}(\mathrm{C}-\mathrm{H}$ aromatic), 2960w (C-H aliphatic), 1580s ($\mathrm{C}=\mathrm{O}$), 3050w (C-H aromatic), 1590s ($\mathrm{C}=\mathrm{N}$), $1400 \mathrm{~s}, 1450 \mathrm{~s}, 1500 \mathrm{~s} \mathrm{~cm}{ }^{-1} \quad\left(\mathrm{C}-\mathrm{H}\right.$ aromatic), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=9.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.6-6.8(\mathrm{~m}, 10 \mathrm{H}$, aromatic-H), $3.8\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{2}-\right), 3.9\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CO}\right), 4.0$ $\mathrm{ppm}\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, and the $\left(\mathrm{NH}-\mathrm{NH}_{2}\right)$ protons are exchangeable with $\mathrm{D}_{2} \mathrm{O}$. Elemental analysis for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}$ (339.42). Calcd: C, 60.16; H, 5.05; N, 20.63; S, 9.45\%. Found: C, 59.78; H, 4.82; N, 20.59; S, 9.10\%.

Synthesis of 1-(2-(5-benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)acetyl)-4-substituted-thio-semicarbazides (4a-d). General procedure: A mixture of hydrazide $\mathbf{3}(0.01 \mathrm{~mole})$ and appropriate isothiocyanate derivatives (0.015 mole) in ethanol $(50 \mathrm{~mL})$ was refluxed for 2 hours. The reaction mixture was then cooled and the precipitate thus formed was collected by filtration and crystallized from ethanol to give the thiosemi-carbazide derivatives 4a-d as colorless needles in high yields.

1-(2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)acetyl)-4methylthiosemicarbazide (4a). $\mathrm{R}=\mathrm{CH}_{3}$. This compound was obtained as needles crystals in 82% yield, Mp. $171-173{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v=3300 \mathrm{~s}, 3200 \mathrm{~s}, 3150 \mathrm{~m}$ (three $\mathrm{N}-\mathrm{H}$), 3040w (C-H aromatic) 2960 w (C-H aliphatic), $1700 \mathrm{~s}(\mathrm{C}=\mathrm{O})$ and at 1140 s (C=S) 1250s, 1140s, 1000s (C-O, C-H, C-N), 700s, 760s, 800s cm^{-1} (aromatic). ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 90 \mathrm{MHz}\right) \delta \mathrm{ppm}=10.6$, $9.3,8.4(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}), 7.6-6.7(\mathrm{~m}, 10 \mathrm{H}$, aromatic-H), $3.8(\mathrm{~s}, 2 \mathrm{H}$, Ph- $\left.\mathrm{CH}_{2}-\right), 4.0\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CO}\right), 2.9\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Elemental analysis for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{OS}_{2}$ (412.54). Calcd: C, $55.32 ; \mathrm{H}, 4.88$; N, 20.37; S, 15.54\%. Found: C, 54.91; H, 5.05; N, 20.22; S, 15.14%.

1-(2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)acetyl)-4ethylthiosemicarbazide (4b). $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$. This compound was obtained as needles crystals in 89% yield, Mp. $159-161^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v=3300 \mathrm{~s}, 3200 \mathrm{~s}, 3150 \mathrm{~m}$ (three $\mathrm{N}-\mathrm{H}$), 3040w (C-H aromatic) $2960 \mathrm{w}, 2920 \mathrm{w}$ (C-H aliphatic), 1700s (C=O) and at 1140s (C=S) 1250s, 1140s, 1000s (C-O, C-H, C-N), 700s, 760s, $800 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta \mathrm{ppm}=10.1$, 8.6, $8.4(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}), 7.5-6.8(\mathrm{~m}, 10 \mathrm{H}$, aromatic-H), $3.8(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{Ph}-\mathrm{CH}_{2}-\right), 4.0\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CO}\right), 3.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.2(\mathrm{t}, 3 \mathrm{H}$, CH_{3}). Elemental analysis for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{OS}_{2}$ (426.57). Calcd: C, $56.32 ; \mathrm{H}, 5.20 ; \mathrm{N}, 19.70 ; \mathrm{S}, 15.03 \%$. Found: C, 56.37; H, 5.06; N, 19.61; S, 14.70\%.

1-(2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)acetyl)-4-cyclohexylthiosemi-carbazide (4c). $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}$. This compound was obtained as crystals in 86% yield, Mp . 173-174 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \boldsymbol{v}=3300 \mathrm{~s}, 3210 \mathrm{~s}$, 3160m (three $\mathrm{N}-\mathrm{H}$), 3050w (C-H aromatic) 2970s, 2960m, 2920w (C-H aliphatic), 1710s (C=O), $1140 \mathrm{~s}(\mathrm{C}=\mathrm{S}), 1250 \mathrm{~s}, 1140 \mathrm{~s}, 1000 \mathrm{~s}(\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{N}), 710 \mathrm{~s}, 760 \mathrm{~s}$, $800 \mathrm{~s} \mathrm{~cm}-1$ (aromatic). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta \mathrm{ppm}=9.8$, 8.4, $7.4(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH})$, 7.4-6.8 (m, 10 H , aromatic-H), $3.8(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{Ph}-\mathrm{CH}_{2}-\right), 3.9\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CO}\right), 1.9-1.0\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right)$. Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{OS}_{2}$ (480.64). Calcd: C, 59.97; H, 5.87; N, 17.48; S, 13.34\%. Found: C, 59.57; H, 5.66; N, 17.30; S, 13.20\%.

1-(2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)acetyl)-4phenylthiosemicarbazide (4d). $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$. This compound was obtained as needles crystals in 82% yield, Mp. $184-185{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v=3300 \mathrm{~s}, 3200 \mathrm{~s}, 3150 \mathrm{~m}$ (three $\mathrm{N}-\mathrm{H}$), 3050w (C-H aromatic) 2960w (C-H aliphatic), 1720s (C=O), 1140s (C=S) 1260s, 1140s, 1020s (C-O, C-H, C-N), 700s, 760s, $800 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 90 \mathrm{MHz}\right) \delta \mathrm{ppm}=10.7,9.8$, $9.8(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH})$, 7.7-6.8 (m, 15 H , aromatic-H), $3.8(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-$ CH2-), 3.9 (s, 2H, $\mathrm{SCH}_{2} \mathrm{CO}$). Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{OS}_{2}$ (474.61). Calcd: C, 60.74; H, 4.67; N, 17.70; S, 13.51%. Found: C, 60.78 ; H, 4.81 ; N, 17.66; S, 13.22%.

Synthesis of 5-[(5-benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)methyl]-4-substituted-4H-1,2,4-triazole-3-thioles (5a-d). General procedure: A solution of thiosemicarbazides 4a-d (2 mmol) in sodium hydroxide ($50 \mathrm{~mL} \mathrm{5} \mathrm{\%}$) was refluxed gently for 3 hours. The reaction mixture was then cooled and acidified with dilute HCl , the crude product thus obtained was crystallized from ethanol to give 5a-d as white needles crystals in $70 \sim 87 \%$ yield.

5-[(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)methyl]-4-methyl-4H-1,2,4-triazole-3-thiol (5a). $\mathrm{R}=\mathrm{CH}_{3}$. This compound was obtained as white needles crystals in 81% yield, Mp. $164-165{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3090 \mathrm{~m}(\mathrm{~N}-\mathrm{H})$, 3030m (C-H aromatic) $2900 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aliphatic), 1570s $(\mathrm{C}=\mathrm{N})$, 1070s ($\mathrm{C}=\mathrm{S})$, $1130 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1000 \mathrm{~s}(\mathrm{C}-\mathrm{N}), 690 \mathrm{~s}, 730 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=12.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.6-6.9(\mathrm{~m}$, 10 H , aromatic-H), $4.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.5\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}-\right), 3.5$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$). Elemental analysis for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{~S}_{2}$ (394.52). Calcd: C, $57.84 ; \mathrm{H}, 4.60 ; \mathrm{N}, 21.30$; S, 16.25%. Found: C, 58.17 ; H, 4.42; N, 21.34; S, 15.90%.

5-[(5 - Benzyl-4 - phenyl-4H-1,2,4-triazol-3-ylthio)methyl]-4-ethyl-4H-1,2,4-triazole-3-thiol (5b). $\quad \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$. This compound was obtained as white needles crystals in 86% yield, Mp. $194-195{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3100 \mathrm{~m}(\mathrm{~N}-\mathrm{H})$, 3030m (C-H aromatic) $2900 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aliphatic), 1590s $(\mathrm{C}=\mathrm{N})$, 1080s ($\mathrm{C}=\mathrm{S})$, $1130 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1000 \mathrm{~s}(\mathrm{C}-\mathrm{N}), 690 \mathrm{~s}, 730 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=13.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.7-6.9(\mathrm{~m}$,

10 H , aromatic protons), $4.0\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.4\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $4.1\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)=408(15), 368$ (5), 294 (2), 267 (100), 266 (50), 252 (7), 234 (18), 190 (2), 166 (2), 149 (20), 116 (16), 91 (70), 77 (25), 65 (21), 51 (17). Elemental analysis for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{~S}_{2}$ (408.55). Calcd: C, $58.80 ; \mathrm{H}$, 4.93; N, 20.57; S, 15.70\%. Found: C, 58.51; H, 5.15; N, 20.35; S, 15.91%.
[(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)methyl]-4-cyclohexyl-4H-1,2,4-triazole-3-thiol (5c). $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}$. This compound was obtained as needles crystals in 70% yield, Mp . $105-106{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3070 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3030 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) $2960 \mathrm{~m}, 2900 \mathrm{~m}$ (C-H aliphatic), 1590s (C=N), 1070s (C=S), $1130 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1020 \mathrm{~s}(\mathrm{C}-\mathrm{N}), 690 \mathrm{~s}, 730 \mathrm{~s}, 760 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=12.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.5-6.8$ $\left(\mathrm{m}, 10 \mathrm{H}\right.$, aromatic protons), $4.0\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.5(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{SCH}_{2}-\right)$, 1.9-1.1 $\left(\mathrm{m}, \quad 11 \mathrm{H}, \quad \mathrm{C}_{6} \mathrm{H}_{11}\right)$. Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{~S}_{2}$ (462.64). Calcd: C, 62.31; H, 5.66; N, 18.17; S, 13.86%. Found: C, $62.26 ; \mathrm{H}, 5.56 ; \mathrm{N}, 17.82 ; \mathrm{S}, 13.71 \%$.
[(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)methyl]-4-phenyl-4H-1,2,4-triazole-3-thiol (5d). $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$. This compound was obtained as white needles crystals in 87% yield, Mp. 190-191 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v=3070 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3010 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) $2890 \mathrm{~m}(\mathrm{C}-$ H aliphatic), 1580s ($\mathrm{C}=\mathrm{N}$), 1070s $(\mathrm{C}=\mathrm{S}), 1150 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1000 \mathrm{~s}(\mathrm{C}-$ $\mathrm{N}), 680 \mathrm{~s}, 730 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta \mathrm{ppm}=13.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.5-6.9(\mathrm{~m}, 15 \mathrm{H}$, aromatic-H$), 4.0(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}-\right)$. Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{~S}_{2}$ (456.60). Calcd: C, 63.13; H, 4.42; N, 18.41; S, 14.04\%. Found: C, 63.20; H, 4.47; N, 18.27; S, 14.16\%.

Synthesis of 2-(5-benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)-N^{\prime}-(3-substituted-4-oxothia-zolidin-2-ylidene)acetohydrazide (6a-d). General procedure: A mixture of thiosemicarbazides 4a-d (2 mmol), chloroacetyl chloride (2 mmol) and potassium carbonate $(1 \mathrm{gm})$ in chloroform $(30 \mathrm{~mL})$ was refluxed on waterbath for 3 hours. The excess chloroform was removed evaporated and the resulting solid products was washed with cold water to remove the excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ and dried followed by crystallization from ethanol to give the corresponding compounds 6a-d as needles crystals in $64 \sim 86 \%$ yields.

2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)- \boldsymbol{N}^{\prime}-(3-methyl-4-oxothiazolidin-2-ylidene)-acetohydrazide (6a). $\mathrm{R}=$ CH_{3}. This compound was obtained as white crystals in 82% yield, Mp. 204-205 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v=3180 \mathrm{~m}(\mathrm{~N}-\mathrm{H})$, 3030w (CH aromatic) $2960 \mathrm{~m}, 2930 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aliphatic), 1750s, 1700s (2 $\mathrm{C}=\mathrm{O}), 1650 \mathrm{~s}(\mathrm{C}=\mathrm{N}), 1130 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1030 \mathrm{~m}(\mathrm{C}-\mathrm{N}), 690 \mathrm{~s}, 730 \mathrm{~s}$, $750 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{6}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=$ $10.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.5-6.9(\mathrm{~m}, 10 \mathrm{H}$, aromatic-H$), 4.11,4.09,3.91$ $\left(\mathrm{s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)=452(9), 324$ (5), 308 (18), 281 (63), 267 (100), 266 (65), 234 (85), 186 (1), 172 (32), 145 (25), 129 (19), 115 (2), 91 (88), 77 (23), 65 (16), 51 (10). Elemental analysis for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$ (452.56). Calcd: C, 55.73 ; H, 4.45 ; N, 18.56; S, 14.17%. Found: C, 55.79 ; H, 4.40; N, 18.50; S, 13.86\%.

2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)- \boldsymbol{N}^{\prime}-(3-ethyl-4-oxothiazolidin-2-ylidene)acetohydrazide (6b). $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$. This compound was obtained as white crystals in 79% yield, Mp. 174-175 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v=3150 \mathrm{~m}(\mathrm{~N}-\mathrm{H})$, 3050w (C-H aromatic) $2980 \mathrm{~m}, 2950 \mathrm{~m}$ (C-H aliphatic), $1750 \mathrm{~s}, 1700 \mathrm{~s}$ two $(\mathrm{C}=\mathrm{O}), 1640 \mathrm{~s}(\mathrm{C}=\mathrm{N}), 1130 \mathrm{~m} \quad(\mathrm{C}-\mathrm{H}), 1040 \mathrm{~m}(\mathrm{C}-\mathrm{N}), 690 \mathrm{~s}, 730 \mathrm{~s}$, $760 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=10.9$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.5-6.9(\mathrm{~m}, 10 \mathrm{H}$, aromatic-H$), 3.95,3.90,3.70(\mathrm{~s}$, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.20\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.05\left(\mathrm{q}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)=$

466 (5), 324 (6), 308 (12), 281 (86), 267 (77), 266 (50), 234 (38), 200 (10), 186 (16), 159 (6), 143 (9), 129 (5), 91 (100), 77 (23), 65 (17), 51 (11). Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$ (466.59). Calcd: C, 56.63 ; H, 4.75 ; N, 18.01; S, 13.74%. Found: C, 56.50; H, 4.88; N, 18.08; S, 13.39\%.

2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)- N^{\prime}-(3-cyclohexyl-4-oxothiazolidin-2-ylidene)acetohydrazide (6c). R $=\mathrm{C}_{6} \mathrm{H}_{11}$. This compound was obtained as white crystals in 64% yield, Mp. 170-171 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v=3150 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3050 \mathrm{w}$ (C-H aromatic) $2980 \mathrm{~m}, 2950 \mathrm{~m}$ (C-H aliphatic), 1750s, 1700s two (C=O), 1640s (C=N), 1130m (C-H), 1040m (C-N), 690s, 730s, $760 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=7.5-$ $6.9(\mathrm{~m}, 10 \mathrm{H}$, aromatic- H and NH proton), 4.00, 3.95, 3.80 (s , $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}-\right), 1.80-1.12\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)=520(1)$, 324 (3), 308 (3), 281 (18), 267 (100), 266 (57), 254 (1), 240 (4), 234 (46), 213 (3), 197 (4), 183 (1), 91 (46), 77 (16), 65 (11), 51 (8). Elemental analysis for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$ (520.68). Calcd: C, 59.98; H, 5.42; N, 16.14; S, 12.32\%. Found: C, 59.72; H, 5.36; N, 16.00; S, 12.02\%.

2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)- N^{\prime}-(3-phenyl-4-oxothiazolidin-2-ylidene)acetohydrazide (6d). $\mathrm{R}=$ $\mathrm{C}_{6} \mathrm{H}_{5}$. This compound was obtained as pale yellow crystals in 86% yield, $\mathrm{Mp} .166-167^{\circ} \mathrm{C}$. IR (KBr) $v=3200 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3050 \mathrm{~m}$ (C-H aromatic) 2980 m (C-H aliphatic), 1740s, 1700s two (C=O), 1640s (C=N), 1130m (C-H), 1040m (C-N), 690s, 730s, $760 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=7.60-$ $6.85(\mathrm{~m}, 15 \mathrm{H}$, aromatic-H and NH proton), 4.00, 3.95, $3.85(\mathrm{~s}$, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$). MS m/z $(\%)=514$ (11), 324 (10), $308(20), 281$ (50), 267 (15), 266 (31), 248 (35), 234 (47), 207 (18), 191 (24), 177 (7), 91 (72), 77 (100), 65 (47), 51 (70). Elemental analysis for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$ (514.63). Calcd: C, 60.68; H, 4.31; N, 16.33; S, 12.46%. Found: C, $59.92 ;$ H, 4.61 ; N, $16.40 ;$ S, 11.61%.

2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)- N^{\prime}-(3-substi-tuted-4-phenylthiazol-2(3H)-ylidene)acetohydrazides (7a-c). General procedure: A mixture of thiosemicarbazides $\mathbf{4 a}, \mathbf{b}$ and $4 \mathbf{d}(0.002$ mole), phenacyl bromide (0.002 mole) and anhydrous sodium acetate in ethanol (30 mL) was refluxed for 6 hours, then, ethanol was evaporated and the product washed with water several times, then crystallized from ethanol to give 7a-c, respectively, as white needles in $62-74 \%$ yield.
2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)- N^{\prime}-(3-methyl-4-phenylthiazol-2(3H)-ylidene)acetohydrazide (7a). R $=\mathrm{CH}_{3}$. This compound was obtained as white crystals in 66% yield, M.p. $224-225{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3150 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3050 \mathrm{w}(\mathrm{C}-$ H aromatic) 2960m, 2910w (C-H aliphatic), 1660s (C=O), 1580s $(\mathrm{C}=\mathrm{N}), 1160 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1070 \mathrm{~m}(\mathrm{C}-\mathrm{N}), 690 \mathrm{~s}, 730 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=10.2(\mathrm{~s}, 1 \mathrm{H}$, NH), 7.4-6.8 (m, 15 H , aromatic-H), $5.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=), 3.8,3.9(\mathrm{~s}$, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)=512(7), 438(8)$, 378 (20), 363 (1), 335 (2), 322 (15), 308 (11), 281 (20), 279 (37), 239 (36), 265 (95), 252 (20, 248 (11), 236 (38, 233 (96), 220 (85), 205 (60), 190 (45), 176 (10), 165 (10), 149 (35), 134 (30), 118 (47), 102 (45), 91 (100), 77 (67), 65 (40), 51 (35), 39 (30). Elemental analysis for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{OS}_{2}$ (512.66). Calcd: C, 63.26; H, 4.72; N, 16.39; S, 12.51\%. Found: C, 63.10; H, 4.99; N, 16.48; S, 11.95\%.
2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)- N^{\prime}-(3-ethyl-4-phenylthiazol-2(3H)-ylidene)acetohydrazide (7b). $\mathrm{R}=$ $\mathrm{C}_{2} \mathrm{H}_{5}$. This compound was obtained as white crystals in 62% yield, Mp. 136-137 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v=3200 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3030 \mathrm{w}(\mathrm{C}-\mathrm{H}$ aromatic) 2960m, 2910w (C-H aliphatic), 1650s (C=O), 1580s
(C=N), 1160m (C-H), 1060m (C-N), 690s, 730s, $750 \mathrm{~s} \mathrm{~cm}^{-1}$ (aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=10.5(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH})$, 7.5-6.9 (m, 15 H , aromatic-H), $5.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=), 4.0,3.9(\mathrm{~s}$, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $3.8\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Elemental analysis for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{OS}_{2}$ (526.69). Calcd: C, 63.85; H, 4.98; N, 15.96; S, 12.18%. Found: C, 63.61 ; H, 5.17 ; N, 15.66; S, 11.98%.

2-(5-Benzyl-4-phenyl-4H-1,2,4-triazol-3-ylthio)- N^{\prime}-(3-phenyl-4-phenylthiazol-2(3H)-ylidene)acetohydrazide (7c). R $=\mathrm{C}_{6} \mathrm{H}_{5}$. This compound was obtained as white crystals in 74% yield, M.p. $213-214^{\circ} \mathrm{C}$. IR (KBr) $v=3250 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3030 \mathrm{~m}(\mathrm{C}-$ H aromatic) 2960 m , ($\mathrm{C}-\mathrm{H}$ aliphatic), 1560s (C=O), 1580 s (C=N), 1160m (C-H), 1030m (C-N), 690s, 730s, 750s cm ${ }^{-1}$ (aromatic). ${ }^{1} \mathrm{HNMR}$ (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm}=10.8(\mathrm{~s}, 1 \mathrm{H}$, NH), 7.7-6.9 (m, 20H, aromatic-H), $5.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=), 4.5,3.9(\mathrm{~s}$, 4 H , two- $\mathrm{CH}_{2}-$), $3.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Elemental analysis for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{OS}_{2}$ (574.73). Calcd: C, 66.88; H, 4.56; N, 14.62; S, 11.16%. Found: C, 66.48 ; H, 4.91 ; N, 14.44; S, 11.02%.

Synthesis of (E)-2-benzyl-6-arylidenethiazolo[3,2-b][1,2,4]-triazol-5(6H)-ones (9a-g). General procedure: A mixture of 3-benzyl-1,2,4-triazole-5(1H)-thiol (1) (5 mmol), aromatic aldehydes ($\mathbf{8} ; 5 \mathrm{mmol}$), chloroacetic acid (5 mmol) and fused sodium acetate (10 mmol) was refluxed in acetic acid/acetic anhydride ($25: 5 \mathrm{~mL}$) mixture for 3 hours. The reaction mixture was then cooled, filtered and crystallized from acetic acid to give the thiazolo[3,2-b][1,2,4]triazol-5(6H)-ones 9a-g in 66 ~ 87% yields The R_{f} values were measured using benzene/ethyl acetate mixture as an eluent in ratio (9:1) and the UV absorption data of compounds 9a-f were measured in CHCl_{3} in concentration ($2 \times 10^{-5} \mathrm{~mol} /$ Liter).
(E) - 2 - Benzyl - 6 - benzylidenethiazolo[3,2-b][1,2,4]triazol$\mathbf{5}(\mathbf{6 H})$-one (9a). $\mathrm{R}=\mathrm{H}$. This compound was obtained as colorless crystals in 74% yield, $\mathrm{Mp} .142-143{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.63$. IR (KBr) $v=3030 \mathrm{~m}$ (C-H aromatic) 2960m, (C-H aliphatic), 1730s (C=O), 1590s (C=N), 1500s, 1460s, 1440s (aromatic skeleton), $690 \mathrm{~s}, 730 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}{ }^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90\right.$ $\mathrm{MHz}) \delta=7.70-7.30(\mathrm{~m}, 10 \mathrm{H}$, aromatic-H$), 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=357.5(21500), 302.5$ (16950), $242.5(9800) \mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.430,0.339$, 0.196 respectively. Elemental analysis for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$ (319.39). Calcd: C, 67.69 ; H, 4.10 ; N, 13.15; S, 10.03\%. Found: C, 67.48; H, 3.82; N, 13.20; S, 9.78\%.
(E)-6-(4-Chlorobenzylidene)-2-benzylthiazolo[3,2-b][1,2,4]-triazol-5(6H)-one (9b). $\mathrm{R}=\mathrm{Cl}$. This compound was obtained as yellow crystals in 85% yield, Mp. $187-188{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.65$. IR $(\mathrm{KBr}) v=3030 \mathrm{~m}$ (C-H aromatic) 2960 m , (C-H aliphatic), 1730s ($\mathrm{C}=\mathrm{O}$), 1590s ($\mathrm{C}=\mathrm{N}$), 1500s, 1480s, 1400s (aromatic skeleton), $690 \mathrm{~s}, 730 \mathrm{~s}, 760 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}$ (DMSO-d ${ }_{6}, 90$ $\mathrm{MHz}) \delta \mathrm{ppm}=7.80-7.20(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H$), 8.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm}=8.40-$ $8.37(\mathrm{~m}, 2 \mathrm{H}$, aromatic- H$), 8.21(\mathrm{~s}, 1 \mathrm{H}$, arylidene- CH$), 7.77-7.74$ $(\mathrm{m}, 2 \mathrm{H}$, aromatic-H), 7.40-7.33 ($\mathrm{m}, 3 \mathrm{H}$, aromatic- H), 7.3-7.28 (m, 2H, aromatic-H), 4.17 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$). ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 135\right.$ $\mathrm{MHz}) \delta \mathrm{ppm}=172.92(\mathrm{C}-2), 159.54(\mathrm{C}=\mathrm{O}), 155.25(\mathrm{C}-8)$, 148.72 (CH=), 138.08, 137.09, 135.69 (aromatic-C), 131.05, 129.07, 128.81, 128.41, 127.22, 124.63 (aromatic-CH), 35.66 $\left(\mathrm{CH}_{2}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=362.0(21500), 310.0(16950), 246.5$ (9800) nm ($\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$), Abs. $=0.439,0.319,0.228$ respectively. Elemental analysis for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$ (353.83). Calcd: C, 61.10 ; H, 3.41 ; N, 11.87; S, 9.06%. Found: C, 61.31; H, 3.45; N, 11.64; S, 8.88\%.
(E)-6-(4-Nitrobenzylidene)-2-benzylthiazolo[3,2-b][1,2,4]-triazol-5(6H)-one (9c). $\mathrm{R}=\mathrm{NO}_{2}$. This compound was obtained as yellow crystals in 79% yield, $\mathrm{Mp} .201-202{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.53$. IR $(\mathrm{KBr}) v=3050 \mathrm{~m}$ (C-H aromatic) 2960m, (C-H aliphatic), 1730s (C=O), 1600s (C=N), 1500s, 1470s, 1410s (aromatic skeleton), $690 \mathrm{~s}, 720 \mathrm{~s}, 760 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}$ (DMSO- $\mathrm{d}_{6}, 90$ $\mathrm{MHz}) \delta \mathrm{ppm}=8.20-7.30(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H$), 8.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $4.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=370.0$ (21200), 302.5 (23800), $247.5(10600) \mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.424,0.476$, 0.212 respectively. Elemental analysis for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (364.37). Calcd: C, 59.33 ; H, 3.31 ; N, 15.36 ; S, 8.79%. Found: C, 59.29; H, 3.42; N, 15.56; S, 8.61\%.
(\boldsymbol{E})-6-(4-Methoxybenzylidene)-2-benzylthiazolo[3,2-b][1,2,4]-triazol-5(6H)-one (9d). $\mathrm{R}=\mathrm{OCH}_{3}$. This compound was obtained as greenish yellow crystals in 81% yield, Mp . 183-184 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.48$. IR (KBr) $v=3030 \mathrm{~m}$ (C-H aromatic) 2960 m , (C-H aliphatic), 1710s (C=O), 1590s (C=N), 1500s, 1460s,1440s (aromatic skeleton), $690 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}$ $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.70-7.20(\mathrm{~m}, 9 \mathrm{H}$, aromatic- H$), 8.20(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}), 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=$ 380.5 (30100), 314.5 (8000), 247.0 (12700) nm ($\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$), Abs. $=0.602,0.160,0.255$ respectively. Elemental analysis for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (349.41). Calcd: C, 65.31; H, 4.32; N, 12.02; S, 9.17\%. Found: C, 65.15 ; H, 4.16; N, 11.94; S, 8.84\%.
(E)-6-(4-N, N-Dimethylaminobenzylidene)-2-benzylthia-zolo[3,2-b][1,2,4]triazol-5(6H)-one (9e). $\mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$. This compound was obtained as red crystals in 87% yield, Mp. 203$204{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.37$, IR (KBr) $v=3030 \mathrm{~m}$ (C-H aromatic) 2960m, (C-H aliphatic), 1710s (C=O), 1580s ($\mathrm{C}=\mathrm{N}$), 1500s, 1460s, 1440s (aromatic skeleton), 690s, 720s, $760 \mathrm{~s} \mathrm{~cm}{ }^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.70-6.60(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H), $8.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.1(\mathrm{~s}, 6 \mathrm{H}$, $\left.N\left(\mathrm{CH}_{3}\right)_{2}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=458.5(54150), 316.5(5050), 268.5$ (9350) nm ($\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$), Abs. $=1.083,0.101,0.187$ respectively. Elemental analysis for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$ (362.46). Calcd: C, 66.28; H, 5.01; N, 15.46; S, 8.84\%. Found: C, 66.40; H, 5.00; N, 15.49; S, 8.05\%.
(E)-6-(4-Bromobenzylidene)-2-benzylthiazolo[3,2-b][1,2,4]-triazol-5(6H)-one (9f). $\mathrm{R}=\mathrm{Br}$. This compound was obtained as yellow crystals in 91% yield, Mp. 194-195 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.66$. IR $(\mathrm{KBr}) v=3030 \mathrm{~m}$ (C-H aromatic) 2960m, (C-H aliphatic), 1710s ($\mathrm{C}=\mathrm{O}$), 1580s $(\mathrm{C}=\mathrm{N}), 1500 \mathrm{~s}, 1460 \mathrm{~s}, 1440 \mathrm{~s}$ (aromatic skeleton), $690 \mathrm{~s}, 720 \mathrm{~s}, 760 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90\right.$ $\mathrm{MHz}) \delta=7.60-7.20(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H), $8.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$). UV at $\lambda_{\text {max }}(\varepsilon)=363.5(26100), 312.0(18000)$, $246.5(11550) \mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.522,0.360,0.231$ respectively. Elemental analysis for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{OS}$ (398.28). Calcd: C, 54.28 ; H, 3.03 ; N, 10.55 ; S, 8.05%. Found: C, 54.64; H, 2.83; N, 10.60; S, 7.90\%.
(E)-6-(4-Acetyloxybenzylidene)-2-benzylthiazolo[3,2-b]-[1,2,4]triazol-5(6H)-one (9g). $\mathrm{R}=\mathrm{OCOCH}_{3}$. This compound was obtained as colorless crystals in 66% yield, Mp . 123-124 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.39$. IR (KBr) $v=3030 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) 2960 m , (C-H aliphatic), 1760s (OCO), 1730s (C=O), 1580s (C=N), 1500s, $1460 \mathrm{~s}, 1440 \mathrm{~s}$ (aromatic skeleton), $690 \mathrm{~s}, 720 \mathrm{~s}, 760 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.60-7.20(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H), $8.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}$, COCH_{3}). Elemental analysis for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (377.42). Calcd: C, 63.64; H, 4.00; N, 11.13; S, 8.49\%. Found: C, 63.58; H, 4.21; N, 11.01; S, 8.37\%.

Synthesis of 2-Benzyl-6-[phenyl(piperidin-1-yl/ morpholin-1-yl)methyl]thiazolo[3,2-b][1,2,4]triazol-5-
ols (11a-j). General procedure: To a solution of 9a-e (2 $\mathrm{mmol})$ in tetrahydrofurane (20 mL) a solution of piperedine or morpholine (3 mmol) was added and the mixture was stirred for 6 hours at room temperature. The crude product thus formed was crystallized from benzene/cyclohexane mixture to give the addition products 11a-j in $65 \sim 75 \%$ yield. The UV absorption spectra of compounds 11a-j were measured in CHCl_{3} in concentration of $4 \times 10^{-5} \mathrm{~mol} /$ liter.

2-Benzyl-6-[phenyl(piperidin-1-yl)methyl]thiazolo-[3,2-b][1,2,4]triazol-5-ol (11a). $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{CH}_{2}$. This compound was obtained as colorless crystals in 67% yield, Mp. $130-131{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3100 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3030 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) 2960 m , (C-H aliphatic), 1590s (C=N), 1520s, 1480s, 1440s (aromatic skeleton), $680 \mathrm{~s}, 750 \mathrm{~s}, 700 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}$ aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.70-7.30(\mathrm{~m}, 10 \mathrm{H}$, aromatic-H), $6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.7-3.2\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right)$, 1.7-1.4 $\left(\mathrm{m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=274(13800), 234$ (9375) nm ($\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$), Abs. $=0.552,0.375$ respectively. Elemental analysis for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{OS}$ (404.54). Calcd: C, 68.29; H, 5.98; N, 13.85; S, 7.93\%. Found: C, 68.40; H, 6.31; N, 13.88; S, 7.58%.

2-Benzyl-6-[(4-chlorophenyl)(piperidin-1-yl)methyl]thia-zolo[3,2-b][1,2,4]triazol-5-ol (11b). $\mathrm{R}=\mathrm{Cl}, \mathrm{X}=\mathrm{CH}_{2}$ this compound was obtained as colorless crystals in 70% yield, Mp . $171-172{ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}=3180 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3050 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) 2940 m , (C-H aliphatic), $1600 \mathrm{~s}(\mathrm{C}=\mathrm{N}), 1520 \mathrm{~s}, 1480 \mathrm{~s}$, 1440s (aromatic skeleton), 680s, 750s, 700s (C-H aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.80-7.20(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H$)$, $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10$ (s, 2H, CH2), 3.5-3.2 (m, 4H, N $\left.\left(\mathrm{CH}_{2}\right)_{2}\right)$, $1.6-1.4\left(\mathrm{~m}, 6 \mathrm{H},(\mathrm{CH} 2)_{3}\right), \mathrm{UV}$ at $\lambda_{\max }(\varepsilon)=283(18225), 236$ (11575) nm ($\left.\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.729,0.463$ respectively. Elemental analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl} \mathrm{N}_{4} \mathrm{OS}$ (438.98). Calcd: C, 62.93; H, 5.28; N, 12.76; S, 7.30\%. Found: C, 62.82; H, 5.63; N, 12.76; S, 6.86\%.

2-Benzyl-6-[(4-nitrophenyl)(piperidin-1-yl)methyl]thiazolo-[3,2-b][1,2,4]triazol-5-ol (11c). $\mathrm{R}=\mathrm{NO}_{2}, \mathrm{X}=\mathrm{CH}_{2}$. This compound was obtained as yellow crystals in 69% yield, Mp . $175-176{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3120 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3030 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) 2900 m , (C-H aliphatic), 1600s ($\mathrm{C}=\mathrm{N}$), 1500s, 1440s (aromatic skeleton), 750s, 730s, $690 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=7.80-7.20(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H), $6.80(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}), 4.10$ (s, 2H, CH2), 3.45, $3.13\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right)$, $1.50\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right), 1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, UV at $\lambda_{\text {max }}(\varepsilon)=332$ (1575), $243(14650) \mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.623,0.586$ respectively. Elemental analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (449.54). Calcd: C, 61.45; H, 5.16; N, 15.68; S, 7.13\%. Found: C, 61.31; H, 4.89; N, 15.57; S, 7.00\%.
2-Benzyl-6-[(4-methoxyphenyl)(piperidin-1-yl)methyl]-thiazolo[3,2-b][1,2,4]triazol-5-ol (11d). $\mathrm{R}=\mathrm{OCH}_{3}, \mathrm{X}=\mathrm{CH}_{2}$. This compound was obtained as pale yellow crystals in 71% yield, Mp. $128-129^{\circ} \mathrm{C}$. IR (KBr) $v=3150 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3030 \mathrm{~m}(\mathrm{C}-$ H aromatic) 2920m, (C-H aliphatic), 1590s (C=N), 1500s, 1440s (aromatic skeleton), $680 \mathrm{~s}, 750 \mathrm{~s}, 700 \mathrm{~s} \mathrm{~cm}{ }^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.60-7.30(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H$)$, $6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 3.6-3.2$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.6-1.4\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right)$, UV at $\lambda_{\text {max }}(\varepsilon)=$ 313 (15800), $\mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.632$. Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (434.56). Calcd: C, 66.33; H, 6.03; N, 12.88 ; S, 7.38%. Found: C, 66.41 ; H, 5.82; N, 12.80; S, 7.12%.

2-Benzyl-6-[(4-N,N-dimethylaminophenyl)(piperidin-1-yl)-methyl]thiazolo[3,2-b][1,2,4]triazol-5-ol (11e). $\mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$,
$\mathrm{X}=\mathrm{CH}_{2}$. This compound was obtained as orange crystals in 75% yield, $\mathrm{Mp} .182-183{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3150 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3030 \mathrm{~m}$ (C-H aromatic) 2920 m , (C-H aliphatic), 1590s (C=N), 1500s, 1440 s (aromatic skeleton), $680 \mathrm{~s}, 720 \mathrm{~s}, 780 \mathrm{~s} \mathrm{~cm}{ }^{-1}(\mathrm{C}-\mathrm{H}$ aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.70-6.60(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H), $6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.65(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.5-3.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.6-1.3\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.90$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=359(26150), 324(12000) \mathrm{nm}$ $\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=1.046,0.480$ respectively. Elemental analysis for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{OS}$ (447.61). Calcd: C, 67.08; H, 6.53; N, 15.64; S, 7.16\%. Found: C, 67.21; H, 6.71; N, 15.74; S, 6.99\%.

2-Benzyl-6-[morpholino(phenyl)methyl]thiazolo[3,2-b]-[1,2,4]triazol-5-ol (11f). $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{O}$. This compound was obtained as colorless crystals in 65% yield, $\mathrm{Mp} .174-175{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3150 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3030 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) 2920m, (CH aliphatic), 1590s ($\mathrm{C}=\mathrm{N}$), 1500s, 1440s (aromatic skeleton), $680 \mathrm{~s}, 720 \mathrm{~s}, 780 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90\right.$ $\mathrm{MHz}) \delta=7.80-7.30(\mathrm{~m}, 10 \mathrm{H}$, aromatic-H), $6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80-3.40\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=$ 281 (14375), 236 (11025) nm ($\left.\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.575$, 0.441 respectively. Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (406.51). Calcd: C, 65.00 ; H, 5.46 ; N, 13.78; S, 7.88%. Found: C, 64.77; H, 5.90; N, 13.79; S, 7.59\%.
2-Benzyl-6-[morpholino(4-chlorophenyl)methyl]thiazolo-[3,2-b][1,2,4]triazol-5-ol (11g). $\mathrm{R}=\mathrm{Cl}, \mathrm{X}=\mathrm{O}$. This compound was obtained as colorless crystals in 72% yield, Mp. 141-142 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v=3160 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3050 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) 2920 m , (C-H aliphatic), 1590s ($\mathrm{C}=\mathrm{N}$), 1420s, 1450s, 1480s (aromatic skeleton), $680 \mathrm{~s}, 710 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=7.48-7.17(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H), $6.77(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}), 4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.26\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.41(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) . \mathrm{UV}$ at $\lambda_{\text {max }}(\varepsilon)=288(14500)$, $233(10400) \mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.580,0.416$ respectively. MS m/z (\%) = 442 (7) $\left[\mathrm{M}^{+2}\right], 440(7)\left[\mathrm{M}^{+}\right], 354$ (98), 352 (98), 325 (16), 323 (27), 289 (4), 243 (3), 220 (1), 208 (9), 190 (20), 169 (41), 167 (100), 135 (28), 117 (21), 116 (31), 103 (34), 91 (43), 87 (38), 77 (18), 57 (35). Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}$ (440.96). Calcd: C, 59.93; H, 4.79; N, 12.71; S, 7.26%. Found: C, 60.11 ; H, 4.48 ; N, 12.60; S, 7.24%.

2-Benzyl-6-[morpholino(4-nitrophenyl)methyl]thiazolo-[3,2-b][1,2,4]triazol-5-ol (11h). $\mathrm{R}=\mathrm{NO}_{2}, \mathrm{X}=\mathrm{O}$. This compound was obtained as yellow crystals in 74% yield, Mp . $179-180^{\circ} \mathrm{C}$. IR (KBr) $v=3120 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3030 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) 2920 m , (C-H aliphatic), 1590s (C=N), 1500s, 1440s (aromatic skeleton), $690 \mathrm{~s}, 730 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}$ $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=8.30-7.30(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H$), 6.80(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}), 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70-3.30\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=239(12800), 246(11800) \mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=$ $0.512,0.472$ respectively. Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$ (451.51). Calcd: C, 58.53 ; H, 4.69 ; N, 15.50 ; S, 7.10%. Found: C, 58.54 ; H, 4.41 ; N, 15.56 ; S, 7.31%.

2-Benzyl-6-[morpholino(4-methoxyphenyl)methyl]thia-zolo[3,2-b][1,2,4]triazol-5-ol (11i). $\mathrm{R}=\mathrm{OCH}_{3}, \mathrm{X}=\mathrm{O}$. This compound was obtained as pale yellow crystals in 68% yield, Mp. $137-138{ }^{\circ} \mathrm{C}$. IR (KBr) $v=3150 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3030 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ aromatic) 2920 m , (C-H aliphatic), 1590s (C=N), 1430, 1500s, 1520s (aromatic skeleton), $690 \mathrm{~s}, 710 \mathrm{~s}, 740 \mathrm{~s} \mathrm{~cm}{ }^{-1}$ (C-H aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.70-7.20(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H), $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60-3.40(\mathrm{~m}$, $\left.8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 3.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) . \mathrm{UV}$ at $\lambda_{\text {max }}(\varepsilon)=311(20025) \mathrm{nm}$ $\left(\mathrm{L} \mathrm{mol}{ }^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.801$. Elemental analysis for
$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (436.54). Calcd: C, 63.28; H, 5.54; N, 12.83; S, 7.34%. Found: C, 62.50; H, 6.01; N, 12.84; S, 7.39%.

2-Benzyl-6-[morpholino(4- N, N-dimethylaminophenyl)-methyl]thiazolo[3,2-b][1,2,4]triazol-5-ol (11j). $\mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{X}$ $=\mathrm{O}$. This compound was obtained as orange crystals in 71% yield, Mp. $165-166^{\circ} \mathrm{C}$. IR (KBr) $v=3200 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 3050 \mathrm{~m}(\mathrm{C}-$ H aromatic) 2960 m , (C-H aliphatic), $1590 \mathrm{~s}(\mathrm{C}=\mathrm{N}), 1430,1480 \mathrm{~s}$, 1510 s (aromatic skeleton), $690 \mathrm{~s}, 700 \mathrm{~s}, 750 \mathrm{~s} \mathrm{~cm}{ }^{-1}(\mathrm{C}-\mathrm{H}$ aromatic). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta=7.70-6.60(\mathrm{~m}, 9 \mathrm{H}$, aromatic-H), $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60-3.40(\mathrm{~m}$, $\left.8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 3\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. UV at $\lambda_{\text {max }}(\varepsilon)=366(21200)$, $326(11200) \mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$, Abs. $=0.848,0.448$ respectively. Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ (449.58). Calcd: C, 64.12; H, 6.04; N, 15.58; S, 7.12\%. Found: C, 64.17; H, 5.81; N, 15.49; S, 7.27%.

Synthesis of 4-(N, N-dimethylaminobenzylidene)malononitrile (12). A mixture of 9 e (3 mmol) with malononitrile and few drops of pyridine in ethanol (30 mL) was refluxed on a water bath for 3 hours. The reaction mixture was cooled and the precipitate thus obtained was collected by filtration, dried and crystallized from ethanol to give the unexpected benzylidenemalononitrile $\mathbf{1 2}$ as orange needles in 82% yield, Mp. 180$181^{\circ} \mathrm{C}$ (Lit. [21] 179-180 ${ }^{\circ}$. In addition a minor amount of the starting compound was isolated as colorless crystals and identified by analysis as 3-benzyl-4-phenyl-1,2,4-triazol-5-thiol (1) [6]. An authentic sample of $\mathbf{1 2}$ was prepared by the reaction of p - N, N-dimethylaminobenzaldehyde (10 mmol) and malononitrile (12 mmol) in ethanol in the presence of pipreidine for comparison purpose.

Acknowledgments. The authors wish to grateful thanks to Assiut University (Egypt) for supporting this work.

REFERENCES

[1] Lang, J.; Tondys, H. Pol. Pharmacol.. Pharm. 1975, 27, 211.
[2] Bhat, A. K.; Bhamaria, R. P.; Bhllara, R. A.; Drliwala, A. Indian J. Chem. 1967, 5, 397.
[3] Zsolnia, T. Bio. Chem. Pharmacol. 1962, 11, 271.
[4] Ram, J. V.; Dobe, V.; Pieters, A. C. L.; Vlltinek, A. J. J. Heterocycl. Chem. 1989, 26, 625.
[5] Leane, E. L. Proc. $7^{\text {th }}$ Brit. Weed Control Conf., Glasgow 1964, Chem.Abstr. 1960, 64, 1279.
[6] Tozkoparan, B.; Akgün, H.; Ertan, M.; Rübsemann, K. Arch. Pharm. (Weinheim) 1995, 328, 169.
[7] Ilhan, E.; Ergenc, N.; Uzun, M.; Kaya, D. Arch. Pharm. (Weinheim). 1994, 327, 825.
[8] Abd El-Samii, Z. K.; El. Feky, S. A. J. Chem. Technol. Biotechnol. 1995, 63, 135; Chem.Abstr. 1995, 123, 256602k.
[9] Essawy, A.; El-Gendy, A. M., El-Safty, M. Said, S. A. Arab Gulf J. Sci. Res. A 1988, 6, 181; Chem.Abstr. 1989, 110, 154233e.
[10] Pal, R.; Sharma, R.; Kumar, S.; Dahiya, R.; Pujari, K. Ind. J. Chem. 1994, 33B, 634.
[11] Mohan, J. Ind. J. Chem. 1998, 37B, 953.
[12] Mohan, J. Ind. J. Chem. 1999, 38B, 867.
[13] Kendall, J. D.; Duffin, G. F. and Hford Ltd., Brit. Pat. 634, 951 (1950); Chem.Abstr. 1950, 44, 9287b.
[14] Gogoi, P. C.; Kataky, J. C. S. Heterocycles, 1991, 32, 231.
[15] Tozkoparan, B. Akgün, H. Ertan M.; Rübsemann, K. Arch. Pharm. (Weinheim) 1995, 328, 169.
[16] a) Gupta, R. P.; Sachedeva, M. L.; Pujari, H. K. Indian J. Chem. 1977, 15B, 1143. b) Prasad, A. R.; Rao, A. N.; Ramalingam, T.; Sattar, P. B. Indian J. Chem., 1986, 25B, 776. c) Mohan, J. Indian J. Chem. 1982, 21B, 243. d) Jain, K.; Handa, R. N. Indian J. Chem. 1982, 21B, 732.
[17] Matei, I.; Comanita, E. Bul. Inst. Politeh. Iasi. 1966, 12, 175; Chem. Abstr. 1969, 70, 47369n.
[18] Hassan, H.Y.; Ismaiel, A.A.; El-Sherief, H.A.H. Eur. J. Med. Chem. 1991, 26, 1.
[19] Simiti, I.; Ghiran, D. Farmacia (Bucharest) 1971, 19, 199.
[20] a) Molecular mechanics calculations (MM2) were performed using the computer program PCMODEL 486 version 4, available from Serena Software. b) Schwartz M.H.; Rosenfeld S.M.; Lee C.I.; Jasinski J.P.; Dardon E.H. Tetrahedron Lett, 1992 33, 6275. c) Okada K.; Kawai, H.; Oda M. Tetrahedron Lett. 1992, 33, 257. d) Sakakibara K.; Allinger N. L. J. Org. Chem. 1995, 60, 4044.
[21] Hennig, L.; Hofmann, J.; Alva-Astudillo, M.; Mann, G. J.

Prakt. Chem. 1990, 332.
[22] Legrand, R. Bull. Soc. Chim. Belg. 1944, 53, 166; Chem. Abstr. 1946, 40, 4671.
[23] a) Mohan, J. and Kiran, Chim. Acta. Turc. 1988, 16, 91; Chem. Abstr. 1989, 111, 232685r b) Mohan, J. and Verma, P.; J. Ind. Chem. Soc., 1992, 268. c) Mohan, J.; Anjaneyulu, G. S. R.; Verma, P.; Yamini, K.V. S. Ind. J. Chem. 1990, 29B, 88. d) Mohan, J.; Singh, V.; Kumar, V. Ind. J. Heterocycl. Chem.; 1993, 3, 47.
[24] a) El-Sherif, H. A. H.; Mahmoud, A. M.; Sarhan, A. A. O.; Hozien, Z. A.;. Habib, O. M. A J. Sulfur Chem. 2006, 27, 65. b) Mahmoud, A. M.; El-Sherif, H. A. H.; Habib, O. M. A.; Sarhan, A. A. O. Phosphorus, Sulfur, Silicon and their Related Elements. 2007, 182, 1757.

